Azure Data Factory 運算子¶
Azure Data Factory 是 Azure 的雲端 ETL 服務,適用於向外擴展的無伺服器資料整合和資料轉換。它提供免程式碼 UI,用於直覺式撰寫以及單一面板的監控和管理。
AzureDataFactoryRunPipelineOperator¶
使用 AzureDataFactoryRunPipelineOperator
以在 Data Factory 內執行管線。預設情況下,運算子將定期檢查已執行管線的狀態,並以「成功」狀態終止。此功能可以停用以進行非同步等待 - 通常與 AzureDataFactoryPipelineRunStatusSensor
搭配使用 - 透過將 wait_for_termination
設定為 False。
以下是使用此運算子執行 Azure Data Factory 管線的範例。
run_pipeline1 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline1", pipeline_name="pipeline1", parameters={"myParam": "value"}, )
以下是使用此運算子執行 Azure Data Factory 管線的範例,並帶有可延遲標誌,以便在 Airflow Triggerer 上發生管線執行狀態的輪詢。
run_pipeline3 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline3", pipeline_name="pipeline1", parameters={"myParam": "value"}, deferrable=True, )
這是使用此運算子執行管線的另一個範例,但與 AzureDataFactoryPipelineRunStatusSensor
結合使用以執行非同步等待。
run_pipeline2 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline2", pipeline_name="pipeline2", wait_for_termination=False, ) pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), ) # Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor_defered", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), deferrable=True, ) pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_async_sensor", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), deferrable=True, )
您也可以在 AzureDataFactoryPipelineRunStatusSensor
中使用可延遲模式,如果您希望在感測器執行時釋放 worker 插槽。
run_pipeline2 = AzureDataFactoryRunPipelineOperator( task_id="run_pipeline2", pipeline_name="pipeline2", wait_for_termination=False, ) pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), ) # Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_sensor_defered", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), deferrable=True, ) pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor( task_id="pipeline_run_async_sensor", run_id=cast(str, XComArg(run_pipeline2, key="run_id")), deferrable=True, )
非同步輪詢資料工廠管線執行的狀態¶
使用 AzureDataFactoryPipelineRunStatusAsyncSensor
(可延遲版本) 以非同步方式定期檢索資料工廠管線執行的狀態。此感測器將釋放 worker 插槽,因為工作狀態的輪詢發生在 Airflow triggerer 上,從而實現 Airflow 內資源的有效利用。
run_pipeline2 = AzureDataFactoryRunPipelineOperator(
task_id="run_pipeline2",
pipeline_name="pipeline2",
wait_for_termination=False,
)
pipeline_run_sensor = AzureDataFactoryPipelineRunStatusSensor(
task_id="pipeline_run_sensor",
run_id=cast(str, XComArg(run_pipeline2, key="run_id")),
)
# Performs polling on the Airflow Triggerer thus freeing up resources on Airflow Worker
pipeline_run_sensor_deferred = AzureDataFactoryPipelineRunStatusSensor(
task_id="pipeline_run_sensor_defered",
run_id=cast(str, XComArg(run_pipeline2, key="run_id")),
deferrable=True,
)
pipeline_run_async_sensor = AzureDataFactoryPipelineRunStatusSensor(
task_id="pipeline_run_async_sensor",
run_id=cast(str, XComArg(run_pipeline2, key="run_id")),
deferrable=True,
)